Molecular dynamics simulations of three protegrin-type antimicrobial peptides: interplay between charges at the termini, β-sheet structure and amphiphilic interactions.

نویسندگان

  • D S Bolintineanu
  • A A Langham
  • H T Davis
  • Y N Kaznessis
چکیده

We have carried out molecular dynamics simulations of the naturally occurring protegrin PG-1 peptide and two of its mutants, PC-9 and PC-13 in the presence of a dodecyl-phosphocholine (DPC) micelle. The effects of mutations that disrupt the β-sheet structure in the case of PC-9 and reduce the charge at the C-terminus in the case of PC-13 are analyzed. It is found that the surface-bound conformations of the peptides are severely affected by both mutations. PG-1 exhibits a conformation in which the C-terminus and the β-hairpin turn interact strongly with the micelle lipid head groups, while its N-terminal strand bends away from the micelle and resides in the aqueous region; PC-13 exhibits strong interactions with the micelle at its N-terminus as well as the β-hairpin turn region, while retaining a much more compact conformation than PG-1; PC-9 achieves a highly distorted conformation relative to the homologous PG-1 structure, which allows both its termini and the β-hairpin region to interact with the micelle. These significant differences observed as a result of seemingly minor mutations to the sequences of the three peptides are explained in terms of the interplay between residue charges, structural rigidity and amphiphilic interactions. Conservative inferences are made bridging these biophysical interactions and the pharmacological profiles of the peptides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: predicting experimental toxicity.

The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimi...

متن کامل

The role of disulfide bridges in the 3-D structures of the antimicrobial peptides gomesin and protegrin-1: a molecular dynamics study.

Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against gram-positive and gram-negative bacteria, as well as fungi. I...

متن کامل

Dimerization of Protegrin-1 in Different Environments

The dimerization of the cationic β-hairpin antimicrobial peptide protegrin-1 (PG1) is investigated in three different environments: water, the surface of a lipid bilayer membrane, and the core of the membrane. PG1 is known to kill bacteria by forming oligomeric membrane pores, which permeabilize the cells. PG1 dimers are found in two distinct, parallel and antiparallel, conformations, known as ...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular simulation

دوره 33 9-10  شماره 

صفحات  -

تاریخ انتشار 2007